广东省最大金矿——河台金矿田剪切带变形特征与成矿关系的磁组构法研究


广东河台金矿田糜棱岩磁组构对剪切带变形与成矿的约束

李康1,焦骞骞1,许德如2,张胜印1,常华诚1,戴家润1

1 昆明理工大学国土资源工程学院

2 东华理工大学,核资源与环境国家重点实验室


微信号:ziranziyuan1
更多资料,添加微信
复制微信号

作者简介:李康,硕士研究生,构造地质学专业。

通讯作者:焦骞骞,博士,讲师,主要从事地质构造与成矿作用的教学和研究。

           

导读:
河台金矿田是广东省内规模最大的金矿,位于钦杭成矿带西南段,累计提交金储量已超过50吨,其金矿体均产于糜棱岩带中,但含矿性却存在显著差异。为研究Au矿化与剪切带变形条件之间的关系,以指导找矿工作,本文在分析矿床地质特征的基础上,开展了糜棱岩磁组构特征研究
研究中,对矿田内两条具有代表性的控矿剪切带中的含矿和无矿糜棱岩的变形特征进行了野外调查和室内岩(矿)相学观察在此基础上,特别开展了岩石磁学和磁化率各向异性(AMS)特征的研究。根据糜棱岩x-T曲线显示的磁黄铁矿居里温度,结合磁滞回线、等温剩磁(IRM)以及矿相学特征,研究认为河台金矿田糜棱岩几乎不含磁铁矿,其载磁矿物主要有磁黄铁矿和黑云母,其中磁黄铁矿的贡献远高于黑云母研究发现,两条糜棱岩带中无矿糜棱岩的磁化率、磁化率各向异性度、椭球体形状参数、磁面理F和磁线理L没有明显差异,两条剪切带的主应力方向也近乎一致,最大主应力方向为近水平,最小主应力倾伏角较缓运动学涡度Wk值亦相近而两条剪切带中含矿糜棱岩与无矿糜棱岩的磁化率各向异性特征存在显著差异,含矿糜棱岩的最大磁化率主轴(即最小主应力轴)近乎陡立,磁化率及其各向异性度增大,糜棱岩的变形强度与含矿性呈现一定的正相关关系这些特征表明,两条含金剪切带均形成于印支期NNW-SSE向近水平的强烈挤压作用条件下,在叠加脆韧性变形时,最大磁化率主轴(即最小主应力轴)变得更陡,更有利于热液的运移和最终成矿。
本文研究成果为该类型金矿的找矿勘查工作提供了新的理论依据。

基金项目:国家自然科学基金项目(编号41902086)云南省重大科技项目(编号202202AG050006)联合资助的成.

说明:参考文献以原文为准,本推文未作详细标注。

               

------内容提纲------

0 引言

1 区域地质背景

2 矿床地质特征

3 样品采集与实验

3.1 样品采集

3.2 测试分析

3.2.1 磁组构实验

3.2.2 岩石磁学实验

4 实验结果

4.1 磁化率各向异性(AMS)及运动学涡度(Wk)

4.1.1 磁组构标量参数

4.1.2 磁化率椭球体主轴特征

4.1.3 运动学涡度

4.2 岩石磁学特征

4.2.1 x-T曲线

4.2.2 磁滞回线和等温剩磁

5 讨论

5.1 磁化率载体与磁组构可靠性

5.2 含矿剪切带的变形与成矿

6 结论

-----------
0  引言
韧性剪切带是重要的控矿要素,目前已在其中发现金、铀、铜、铁等多种金属矿床特别是金矿床,国外世界级的大金矿几乎都产在太古宙绿岩带的剪切带中,例如巴西RioItapicuru含金绿岩带的FMP型金矿床;芬兰东部伊洛曼齐绿岩带新太古代的Raémepuro韧性剪切带型金矿;加纳西北部Wa-Lawra绿岩带金矿床。国内发现的剪切带金矿床例如山东省胶东地区北部的玲珑金矿田,粤桂边境庞西垌-金山银金矿床;广东河台金矿田。因此,含金剪切带及其控矿机制一直是过去研究的前沿课题研究表明,对于该类型的金矿床,其成矿全过程(含金热液的运移、富集和沉淀)都受剪切带的变形类型(韧性、韧-脆性或脆性)、强度(如应力、应变)、方式(单剪或纯剪)、环境(如温度、压力等)、运动学(如运动方向、速率和运动学涡度等)等控制然而,哪种变形条件下形成的剪切带矿化能力最强,对成矿物质的迁移和富集最有利,目前仍存在争议。例如,在变形强度方面,一部分学者认为剪切带规模越大、活动时间越长、应变越强,成矿作用越强,即金矿化与剪应变强度呈正相关关系,并提出“强应变带型”韧性剪切带控矿构造;而更多的学者强调,Au矿化可能并非形成于强应变区,而是形成于韧-脆性剪切过渡带,源于韧性剪切带由韧性向脆性转化时,含金流体所处的物理化学条件的改变导致金络合物的失稳从而沉淀
河台金矿田是广东省内规模最大的金矿,已经累计提交金储量超过50t。在矿田内发现有高村、云西、河海、后迳、太平顶、桃子山等金矿床或矿化点。由于这些金矿床(点)严格受剪切带的控制,产于不同的糜棱岩带中,因而被认为是典型的与剪切带有关的金矿床(点)然而,这些金矿床(点)的含矿性却差别极大,其中高村金矿床和云西金矿床受糜棱岩带ML9和ML11的控制,含矿性最好,是河台金矿田主要的开采对象。而其他糜棱岩带的含矿性差,仅形成金矿化点那么,河台金矿田Au矿化与剪切变形条件之间有何关系,即含矿剪切带的变形类型、强度、方式、环境、运动学、流变学等方面有何特点?对于该问题目前仍缺少系统研究,前人仅对矿化剪切带的应力状态有过一些探讨,结果存在较大差异
剪切带内的岩石一般发育显著增强的岩石组构,这些组构是剪切带应变和剪切作用特征的直接反映磁组构是岩石组构研究中的一种常用方法,是指岩石内部磁性矿物颗粒或晶格的定向性,其物理实质是磁化率各向异性(anisotropy of magnetic susceptibility,AMS)。由于AMS能够提供岩石组构与应变强度之间的关系,其中包括磁化率椭球体标量参数与应变速率之间的相关关系,因而是反映变形地区的一个有效的应变指示计近年来,研究者们尝试将磁组构应用于剪切带有关的金属矿床的研究中,并取得了较好的效果。因此,本文将在对河台金矿田含矿剪切带野外调查和室内显微构造观察的基础上,开展详细的岩石磁组构研究,对比分析有利于金矿化的剪切变形条件,为该类型金矿的找矿勘查工作提供新的理论依据。
1  区域地质背景
广东河台金矿床大地构造位置位于钦-杭结合带的南段。钦-杭结合带也叫十-杭带(十万天山-杭州湾带),是扬子板块与华夏板块之间的巨型构造结合带,同时也是华南地区最重要的一条Cu-Au-Pb-Zn-Ag多金属成矿带。该带从广西钦州湾,经湘东和赣中,延伸到浙江杭州湾地区,全长2000km,宽100~150km,其整体呈S弧形分布周永章等(2012)根据内部结构不均一性和所赋存矿产的差异,将该带划分为3段:北段指南岭以北地区,及绍兴—江山—萍乡一带,以铜、铁和贵金属为代表矿种中段与南岭带大体一致,主要分布在北纬24°~27°之间,是重要的钨锡多金属矿产地南段位于南岭以南的粤西—桂东地区,大致与云开-大瑶山-十万大山带相当,代表矿物有金、银多金属等(图1)。

图1 云开地区地质简图

           

河台金矿所处的云开—十万大山地区地层发育较全(图1),下古生界整体为一套浅海-滨海相交替的沉积建造。上志留统和下泥盆统缺失,中上泥盆统与早古生代变质岩为角度不整合或断层接触,泥盆系和石炭系为滨海—浅海或沼泽相碎屑岩构造,基本保存原岩的特征,在区域内零星分布。上三叠统到下侏罗统砂砾岩角度不整合于上古生界沉积岩层之上,以碎屑岩为主,呈零星分布。以罗定盆地和化州盆地为代表的白垩系角度不整合于白垩纪之前的地层之上。云开地区有大量花岗质侵入体,时代从加里东期到燕山期均有分布。钦-杭结合带南段还发育着一系列NE-SW向的褶皱和断裂由北向南存在三条具有代表性的断裂分别为:防城-灵山断裂(图1中F1)、罗定-广宁断裂(图1中F2)、吴川-四会断裂(图1中F3)。河台金矿田位于广宁-罗定断裂(F2)和吴川-四会断裂(F3)交汇部位的北侧。
2  矿床地质特征
河台矿田出露的地层主要有云开群、奥陶系、志留系(图2a)。云开群分布在矿田中部,为一套无序变质岩,主要由各类片岩、混合岩及片麻岩等组成。云开群混合岩属于中到浅色的全熔混合岩,矿物成分以长石、石英为主,含少量黑云母(约10%)等暗色矿物(图3a;焦骞骞等,2020)。混合岩后期遭受韧性剪切变形,形成若干条糜棱岩带,金矿床就赋存在这些糜棱岩带中。奥陶系和志留系分布在矿区南部,F1断层南侧,变质程度较浅,岩性以千枚岩、细粒砂岩和变质粉砂岩为主。矿田出露两处岩体:印支期云楼岗岩体位于矿田西部,岩性主要为黑云母斜长花岗岩、黑云母二长花岗岩和黑云母花岗闪长岩;燕山期伍村岩体位于矿田东部,与云开群混合岩侵入接触,岩性为中—中粗粒斑状—巨斑状黑云母花岗岩或二长花岗岩。

图2 广东河台矿田地质简图,其中的赤平投影为坑道中矿体面理的产状(a)(据陈骏等,1993修改)和云西矿床+240m中段脉状、透镜状矿体示意图(b)(据龚贵伦等,2010修改)

           

图3 河台金矿野外及镜下照片

(a)—云开群混合岩;(b)—糜棱岩的面理陡倾;(c)—糜棱岩定向样品,XZ代表应变椭球体最大和最小应变主轴方向,对应的K1K3为磁化率最大和最小应变主轴;(d)—图3c糜棱岩的显微照片,糜棱面理发育,云母鱼指示左旋;(e)—糜棱岩中的S-C组构,指示左旋;(f)—长石σ旋斑指示左旋;(g)—石英颗粒的亚颗粒旋转重结晶;(h)—石英脉型矿体与糜棱面理大致平行;(i、j)—石英脉型矿石显微照片;(k)—蚀变糜棱岩型矿体野外照片;(l~o)—蚀变糜棱岩型矿石显微照片照片;(p)—矿石中灯芯状的黄铁矿;(d、e、f、g、i、l、n)—正交偏光;(j、m、o、p)—反射光;ML—糜棱岩;Qtz—石英;Sul—硫化物;Ser—绢云母;Mus—白云母;Fsp—长石;Po—磁黄铁矿;Py—黄铁矿;Cpy—黄铜矿;Ss—糜棱面理(S面理);Sc—剪切面理(C面理)

           

矿田内的宝鸭塘断裂(F1)为区域上广宁-罗定断裂带的一部分,在其北部分布着一系列的韧性剪切带,呈狭长条带状,宽度数厘米至数十米,长度数十至上千米,糜棱面理发育(图3b),走向为52°~72°,倾向NW—NNW,倾角50°~85°(图3c、d)糜棱岩中发育各种典型韧性变形特征,例如S-C组构(图3e)、长石σ旋斑(图3f)、亚颗粒旋转重结晶的细小石英颗粒(图3g)。这些韧性剪切带中产出规模不同的金矿床,例如,高村金矿产于9号糜棱岩带ML9中,云西、后迳、河海金矿分别产于ML11、ML12、ML13糜棱岩带中(图2a)。矿体产状与糜棱面理大体一致,多呈脉状产出(图3h),沿走向延伸较大,约100~300m,一般厚度变化不大,宽为2~4m;也可呈透镜状,中部膨大变厚可达十米以上,沿走向往两端逐渐变窄至尖灭(图2b)。
河台金矿矿石类型包括含金石英脉矿石(图3i、j)和蚀变糜棱岩矿石(图3k)。两类矿石中的结构有较为明显区别,前者以细脉状为主,而后者细脉状和浸染状同等发育两类矿石的矿物组成没有明显区别,矿石矿物主要包括自然金、黄铁矿(图3l、m)、磁黄铁矿(图3n、o)、黄铜矿、少量毒砂、闪锌矿等;脉石矿物矿石中有为石英、绢云母及少量方解石、绿泥石。在矿石中可见到少量定向排列的硫化物,例如,一些长条状或灯芯状的磁黄铁矿(图3p),形成可能与韧性剪切有关
3  样品采集与实验
3.1 样品采集
对河台金矿田高村金矿床40m中段和300m中段,以及云西金矿110m中段和90m中段进行野外地质调查,并采集定向岩(矿)石样品高村矿床采集4件糜棱岩定向岩石样品,其中1件为含矿糜棱岩。云西矿床采集5件糜棱岩定向岩石样品,包括2件含矿糜棱岩(表1)。
表1 河台金矿田采样位置及运动学涡度(Wk
3.2 测试分析
3.2.1 磁组构实验
实验前首先将野外采集的9件糜棱岩定向样品切割成长×宽×高为22mm×22mm×22mm的立方体,每件样品被切割8块立方体,共计72件(表1)。常温下的低场磁组构测试在中国科学院南海海洋研究所的边缘海与大洋地质重点实验室进行使用捷克AGICO的Kappabridge磁化率仪KLY4S进行AMS测试,测试场强300A/m,工作频率875Hz,检出限0.02×10-6(SI),测试精度0.1%。AMS测试程序为SUFAR1.2,方块样品依次围绕正交三轴旋转测试,旋转角速度为0.5rad/s,所得的数据用Anisoft4.2软件处理。
3.2.2 岩石磁学实验
从9件糜棱岩样品中选取4件有代表性的样品进行岩石磁学实验,其中高村和云西金矿各两件,一件为含矿糜棱岩,一件不含矿。实验前将样品粉碎至200目,以备测试。实验在中国地质科学院地质力学研究所自然资源部古地磁与古构造重建重点实验室完成。热磁分析使用捷克Agico公司生产的KappabridgeKLY-4磁化率仪,配备CS4/CS-L高低温装置系统完成。将样品放于氩气环境中,从室温加热至700℃,加热速率为10℃/min,然后再冷却至室温,从而获得升温和降温的体积磁化率随温度的变化曲线(K-T曲线),经过质量归一化处理,得到质量磁化率随温度的变化曲线(x-T曲线)。利用CUREVAL5(Agico,捷克)软件对原始数据进行矫正处理。
磁滞回线和等温剩磁(isothermal remanent magnetization,IRM)的测试采用振动样品磁强计(MicroMag VSM8600)完成,外加磁场为±2.0T,经顺磁性校正后可以得到饱和磁化强度(Ms)、矫顽力(Hc)、饱和剩余磁化强度(Mrs)等磁滞参数,然后进行逐步饱和等温剩磁(saturationIRM,SIRM)反向场退磁曲线测试,得到剩磁矫顽力(Hcr)参数。
4  实验结果
4.1 磁化率各向异性(AMS)及运动学涡度(Wk)
4.1.1 磁组构标量参数
实验测得高村和云西金矿床糜棱岩磁化率各向异性标量参数如表2。通过平均磁化率(Km)、椭球体形状参数(T)、磁化率各向异性度(P)、最大磁化率主轴(K1)、最小磁化率主轴(K3等可以更好地反映磁组构的特征,从而进一步了解岩石的构造变形。

表2 河台金矿田糜棱岩磁组构参数表

    

注:T—磁化率椭球形状参数(形状因子);K1—最大磁化率主轴产状(倾伏向/倾伏角);K3—最小磁化率主轴产状;Km—平均磁化率;Pj—校正磁化率各向异性度;磁面理F=K2/K3;磁线理L=K1/K2

           

河台金矿田高村金矿床含矿糜棱岩和不含矿糜棱岩的平均磁化率Km值分别为415.0×10-6~2320.0×10-6(SI)(平均1426.9×10-6(SI))和48.8×10-6~372×10-6(SI),平均136.8×10-6(SI)(图4a),(矫正后)磁化率各向异度Pj值分别为1.529~1.652(平均1.586)和1.053~1.557(平均1.217)(图4c),磁化率椭球形状参数T值分别为0.420~0.687(平均0.568)和-0.868~0.912(平均0.308)(图4e);云西金矿床含矿和不含矿糜棱岩的Km值分别为251×10-6~10900×10-6(SI),平均3581.3×10-6(SI)和107×10-6~444×10-6(SI),平均216.7×10-6(SI)(图4b),Pj值分别为1.091~1.764(平均1.491)和1.017~1.742(平均1.238)(图4d),T值分别为0.136~0.98(平均0.537)和0.656~0.972(平均0.426)(图4f)。KmPj值有一定的正相关关系,含矿糜棱岩的KmPj值明显高于不含矿糜棱岩(图5a、b),T值没有明显区别,在T-Pj图解上表现出“压扁型”应变椭球体的特征(图5c、d)。研究表明,平均磁化率能反映样品中矿物磁化率的综合特征不含矿糜棱岩平均磁化率Km<500×10-6(SI),可能主要由云母、角闪石等顺磁性矿物引起,但也不能就此排除铁磁性矿物的贡献含矿糜棱岩Km≥500×10-6(SI),可能主要由磁铁矿、黄铁矿、磁黄铁矿等铁磁性矿物导致。铁磁性矿物,例如磁铁矿,由于具有并行结构,因此可能引起反向的磁组构而导致给出错误的解释。因此,弄清楚磁性矿物十分必要,本文4.2部分将通过岩石磁学特征对磁性矿物做进一步研究。

图4 高村金矿(a)和云西金矿(b)平均磁化率Km频数分布直方图;高村金矿(c)和云西金矿(d)磁化率各向异性度Pj直方图;高村金矿(e)和云西金矿(f)磁化率椭球体形态参数T直方图

               

图5 高村(a、c)及云西(b、d)金矿床样品的Km-Pj(a、b)及T-Pj(c、d)图

           

Flinn图解以磁面理(F)为横坐标,磁线理(L)为纵坐标,以(1,1)作坐标中心,可以反映磁化率椭球体的形态及磁面理和磁线理的发育特征高村金矿床含矿糜棱岩不含矿糜棱岩的F值分别为1.363~1.452(平均1.409)和1.004~1.391(平均1.138),L分别为1.067~1.124(平均1.100)和1.005~1.241(平均1.059);云西金矿床含矿不含矿糜棱岩F值为1.069~1.510(平均1.331)和1.013~1.510(平均1.162),L为1.004~1.197(平均1.096)和1.003~1.123(平均1.052)(表2)。高村(图6a)和云西金矿床(图6b)绝大多数样品位于K<1区域,符合磁面理发育的“压扁型”应变椭球体特征。尽管糜棱岩的FL值也表现出一定的正相关关系,含矿糜棱岩的FL值大于无矿糜棱岩,但是岩石类型没有明显区别,绝大部分都为S型和SL型构造岩(图6)。

图6 高村金矿床(a)和云西金矿床(b)糜棱岩弗林图解(图例同图5)

4.1.2 磁化率椭球体主轴特征
磁化率椭球体与应变椭球体在主轴上具有良好的对应关系,能够反映岩石组构的产状特征。在磁化率椭球体主轴研究中,K1K2K3分别代表最大、中间、最小磁化率主轴,而实际通常采用磁线理方向(K1)和磁面理方向(K3)作椭球体的应变分析K1代表最大拉伸方向,与最大拉应力平行,即最小主应力σ3,而K3代表最大主应力σ1方向,从而根据磁化率主轴方位来判断应力方向。
高村金矿床不含矿糜棱岩和含矿糜棱岩K1σ3)方位差别较大(表1)含矿糜棱岩K1倾伏向NNW,近于直立,倾伏角84.3°(图7a),而不含矿糜棱岩倾伏向NEE-SWW,倾伏角相对较小,倾伏角27°~57°(表1,图7b~d);K3σ1)方向近于一致,为SSE—SN向,且倾角较缓,为0.1°~21.6°(表1,图7a~d)。将所有样品的磁化率主轴方向进行统计,得到控制高村金矿床的ML11号糜棱岩带最小磁化率主轴K3(最大主应力σ1)呈NNW-SSE方向,多近于水平,少部分略向北倾(图7e),优势产状为174°∠5°(图7g);最大磁化率主轴K1(最小主应力σ3)方向大致呈NEE-SWW向(图7e),优势产状为247°∠18°(图7f)。

图7 高村金矿床各样品的磁化率椭球体主轴投影(a~d)(下半球等面积投影,其中图a为含矿糜棱岩、所有样品磁化率椭球体主轴投影(e)(下半球等面积投影)以及K1(f)和K3(g)优选方位的等密度投影

           

云西金矿床与高村金矿床有类似的特征,不含矿糜棱岩和含矿糜棱岩K1σ3)方位差别较大(表1),含矿糜棱岩K1近于直立,倾伏角为79°和84.5°(表1,图8a、b),不含矿糜棱岩倾伏向NEE-SWW向,倾伏角相对较小,为5.3°~34.2°(图8c~e);而K3方位近于一致,为SSE到SN向,近于水平,6°~14.5°(表1,图8a~e)。将所有样品的磁化率主轴方向进行统计,得到控制云西金矿床的ML9号糜棱岩带的磁化率主轴投影分布特征(图8f),最大磁化率主轴K1(最小主应力方向σ3)呈近NEE-SWW向,优势产状为258°∠4°(图8g);最小磁化率主轴K3(最大主应力σ1)总体呈NNW-SSE向,优势产状为349°∠13°(图8h)。可见,ML9号糜棱岩带(云西矿床)与ML11号糜棱岩带(高村矿床)的应力应变特征相似,都是在NNW-SSE向近水平的挤压作用下形成的。
    

图8 云西金矿床各样品的磁化率椭球体主轴投影(a~e)(下半球等面积投影,其中a、b为含矿糜棱岩),云西金矿床所有样品磁化率椭球体主轴投影(f)(下半球等面积投影)以及K1(g)和K3(h)优选方位的等密度投影

4.1.3 运动学涡度
在自然界中的剪切带多数是由纯剪和单剪共同作用形成的,但二者在剪切运动中是如何分配的呢?或者说谁占主导地位?因而引出运动学涡度概念。运动学涡度最早由Truesdel(1953)提出,Means et al.(1980)将涡度概念引入地质学并作为瞬时非共轴应变程度Passchier(1986)首次开展了对糜棱岩的运动涡度分析,之后众多学者对剪切带的涡度理论不断完善并提出了许多计算涡度的方法,渐渐成为剪切带构造研究的一个新道路运动学涡度值(Wk)可以反映递进变形中非共轴度及剪切作用类型过去通常利用宏观构造中所见的对称性或者显微构造中的压力影、S-C组构、残斑类和云母鱼等来判断剪切带非共轴程度,定量化程度较低进入20世纪后,国内外的构造地质学家对不同地区剪切带开展了实例研究(例如,王勇生等,2004;Johnson et al.,2009;Xypolias,2010),完善了在糜棱岩中的涡度计算理论,并提高了对剪切带构造及演化的认识目前,估算运动学涡度的方法有多种,如张裂隙和构造缝合线法(Tikoff et al.,1995),刚性颗粒或旋转碎斑法(Xypolias et al.,2001),石英c轴组构法(Xypolias et al.,2001;郑亚东等,2008),极摩尔圆法(张进江等,1997)等。当能够确定岩石变形后瞬时拉伸轴ISA(包括瞬时压缩轴ISA1和瞬时伸长轴ISA2或最大主应力σ1K3)的方位,则可以利用公式Wk=sin2ξ计算(其中ξ为剪切带边界(C面理)的法线与最大主应力σ1的夹角)实现递进变形过程中非共轴度的定量化(Weijermars,1991;Tikoff et al.,1995)。该公式计算运动学涡度侧重于探讨岩石应变类型,若考虑到对于岩石中矿物的适合性,理论上适用于岩石中所有矿物的研究(Tikoff et al.,1999)。利用该公式计算的河台金矿区韧性剪切带的涡度值如表1,高村金矿床糜棱岩带(样品ML11)的运动学涡度值为0.24~0.47,平均0.34;而云西金矿床(样品ML9)为0.12~0.65,平均0.35。可见,两条含金糜棱岩带Wk值近于一致。
4.2 岩石磁学特征
4.2.1 x-T曲线
质量磁化率随温度变化(x-T曲线)可有效识别样品中磁性矿物颗粒的大小、类型及随温度变化而产生的矿物相转化。4个样品中,不含矿糜棱岩样品20H05和20H10室温下初始x值相对较低,小于10×10-6m3·kg-1(图9a、c),而含矿糜棱岩样品20H07和20H12室温下初始x值大于20×10-6m3·kg-1(图9b、d)可见,含矿糜棱岩磁化率明显高于不含矿糜棱岩。所有样品在加热到280℃时,磁化率随温度升高而明显上升,在300℃达到最大,可能生成了新的强磁性矿物从300℃开始,磁化率随温度升高迅速降低,在320℃降至最低值,显示了磁黄铁矿的居里温度。继续加热,样品20H05磁化率又再次升高,升至560℃开始大幅降低,到580℃几乎接近为零(图9a),显示了磁铁矿的居里温度,而其他3个样品磁化率未发生明显上升(图9b~d)。因此,除了样品20H05可能含有极少量的磁铁矿,其他3个样品均不含氧化物类的磁性矿物。另外,除了样品20H05的升温曲线明显高于降温曲线(图9a),其他3个样品的升温曲线均明显低于降温曲线(图9b~d),暗示这3个样品中的一些矿物在加热的过程中发生了相变,生成了诸如含铁的硅酸盐或黏土矿物所转变的强磁性物质(卢升高等,2008)。此外,所有样品的升、降温曲线表现出明显的不一致性,表明在加热-冷却的过程中具有不可逆性。

图9 河台矿区代表性样品的热磁曲线特征

(b-1、c-1、d-1)—升温曲线局部放大图

4.2.2 磁滞回线和等温剩磁
磁滞特征可以提供铁磁性矿物矫顽力和磁畴状态信息的种类(图10)。两个含矿糜棱岩样品20H07和20H12单位质量的饱和磁化强度Ms2500×10-8~3000×10-8Am2·kg-1,饱和剩余磁化强度Mrs1000~1500×10-8Am2·kg-1两个不含矿糜棱岩样品20H05和20H10单位质量的Ms400×10-8~600×10-8Am2·kg-1,饱和剩余磁化强度Mrs100×10-8~200×10-8Am2·kg-1可见,含矿糜棱岩MsMrs远大于不含矿糜棱岩,表现出明显的磁滞特征,指示了铁磁性组分的存在。所有样品的磁滞回线呈现出明显的“细腰”特征,且均在0.3T前达到闭合,呈现出一个低矫顽力的特点,这表明样品的载磁矿物主要为软磁性矿物(如磁黄铁矿等),很少或不存在诸如赤铁矿类的硬磁性矿物。此外,在磁滞参数所得出样品的Day图上,显示样品中铁磁性组分的平均磁畴状态为单畴(singledomain,SD)(图10e)。

图10 河台金矿田代表性糜棱岩样品的磁滞回线

(a)—高村金矿床不含矿糜棱岩;(b)—含矿糜棱岩样品;(c、d)—云西金矿床不含矿糜棱岩和含矿糜棱岩样品;(e)—磁滞参数的Day图;SD—单畴;PSD—假单畴

           

为了进一步确定样品中的载磁矿物,针对代表性样品开展了等温剩磁获得曲线和反向场退磁曲线分析(图11)。当外加场强由0增加到0.1T时,所有样品IRM值大幅升高,将近饱和的75%左右;随后IRM随场强的升高而缓慢增加,曲线斜率逐渐变小,大约在0.2T全部达到饱和。饱和后,两个含矿糜棱岩样品的IRM值大于1200×10-8Am2·kg-1,而不含矿糜棱岩的IRM值低于200×10-8Am2·kg-1,可见含矿糜棱岩要明显大于不含矿糜棱岩。SIRM的反向场退磁曲线显示剩磁矫顽力相对较小,不超过0.045T,含矿糜棱岩的SIRM值也明显大于不含矿糜棱岩(图11b),同样表明矿石中主要的载磁矿物是磁黄铁矿。

图11 河台矿区代表性样品的IRM曲线(a)和反向场退磁曲线(b)

5  讨论
5.1 磁化率载体与磁组构可靠性
岩石中的顺磁性、抗磁性、铁磁性矿物共同决定了磁化率的大小及各向异性。河台矿田中含矿糜棱岩带由云开群混合岩发生韧性剪切形成前人研究表明,高村和云西矿床混合岩Km值较低,分别为358.9×10-6(SI)和971.9×10-6(SI)(表2;王历星等,2019)。混合岩的主要矿物成分为长石、石英(图3a),但为抗磁性矿物,对磁化率贡献可忽略不计,因此推测顺磁性矿物黑云母是主要的载磁矿物。不含矿糜棱岩磁化率低,与混合岩平均磁化率接近,小于500×10-6(SI)。糜棱岩原岩为混合岩,黑云母也可能是其主要的载磁矿物。然而,根据x-T曲线特征,所有样品x值在320℃降到最低,此为磁黄铁矿的居里温度磁滞回线及等温剩磁特征也同样说明载磁矿物主要为铁磁性矿物,而顺磁性矿物黑云母贡献小于磁黄铁矿(图10、11)。这些糜棱岩中几乎不含磁铁矿,尽管样品20H05中发现含极少量的磁铁矿,但由于该样品磁化率很低(<500×10-6(SI)),所以磁铁矿的贡献几乎是可以忽略的。因此,河台金矿田的磁黄铁矿和黑云母联合控制了糜棱岩的磁化率。然而,高村和云西矿床含矿糜棱岩的平均磁化率均值分别为1426.9×10-6(SI)和3581.3×10-6(SI),远大于无矿糜棱岩,说明磁黄铁矿的贡献远高于黑云母。矿相学观察也显示磁黄铁是主要的矿石矿物之一,可见磁黄铁矿是含矿糜棱岩的主要的载磁矿物。磁化率主轴K1K2K3的方位是由于岩石变形过程中导致的矿物优选方位引起的,磁化率各向异性(AMS)椭球体主轴(K1K2K3)与岩石应变椭球体主轴(XYZ)相对应。因此,河台金矿的磁组构数据能够有效反映剪切带的变形特征。
5.2 含矿剪切带的变形与成矿
钦杭结合带在印支期的造山活动中发生了广泛且近于同时发生的强烈挤压引起的韧性剪切变形、动力变质、混合岩化及岩浆侵入。对于河台金矿田剪切带变形时间,前人进行了大量年代学研究,表明剪切变形发生在印支期,例如Jiao Qianqian et al.(2017b)利用锆石U-Pb定年获得剪切带经历过240Ma和204Ma的两阶段变形;Zhang Kaijun et al.(2009)在通过糜棱岩中白云母39Ar-40Ar定年获得198.9±1.2Ma、196.9±5.6Ma的变形年龄丁汝鑫等(2015)获得防城-灵山剪切带(图1中F1)中绢云母30Ar-40Ar年龄为244±0.6Ma,并指示印支期发生了SN向的挤压运动Wang Yuejun et al.(2007)在云开地区韧性剪切带通过黑云母39Ar-40Ar定年获得了大量230~220Ma的年龄另外,前人对河台金矿成矿年龄也进行了大量研究,为燕山期成矿,集中在175~152Ma,晚于印支期剪切变形时间。尽管印支期形成剪切带的过程中未能形成工业化的矿体,但是剪切带作为地壳中的局部薄弱带,为后期再次发生变形破裂奠定了基础。因此,印支期剪切带形成时的剪切变形特征对于其后期是否成矿起到至关重要的作用
本文对控制高村金矿床的和云西金矿床的ML11号和ML9号糜棱岩带的AMS特征进行对比研究两条剪切带中不含矿糜棱岩的Km平均值分别为136.8×10-6(SI)和216.7×10-6(SI),<500×10-6(SI),Pj平均值为1.217和1.238,T平均值为0.308和0.426,F平均值为1.138和1.162,L平均值为1.059和1.052,具有类似的特征形成两条剪切带的主应力方向也近于一致,最大主应力方向σ1为近水平NNW-SSE向,最小主应力σ3为NEE-SWW向,倾伏角较缓,多数小于30°(表1,图7、8),与野外观察到的糜棱岩带的宏观变形特征相吻合运动学涡度Wk可以准确地度量出单剪和纯剪在剪切运动中各自所占的比例,进而更好地解释剪切带运动学性质Wk=0代表纯剪切(即共轴递进变形),Wk=1代表简单剪切,0<Wk<1属于一般剪切,但这并不意味Wk=0.5时纯剪和单剪作用相等。前人研究表明,对于一般的三维变形,运动学涡度的中间值位于0.71~0.75,这种现象通常叫做“纯剪倾向性”ML11号剪切带(高村金矿床)的运动学涡度Wk值为0.24~0.47,平均0.34;ML9号剪切带(云西金矿床)Wk值为0.12~0.65,平均0.35。可见,两条剪切带的Wk值近于一致,均在0.71以下因此,综合前人得出河台金矿剪切带变形的年代学结果,两条剪切带在印支期NNW-SSE向近水平的强烈挤压作用下形成的S型和SL型构造岩,具有强烈压扁的特征,并且在剪切变形过程中纯剪切作用所占的比重要明显大于简单剪切。
然而,含矿糜棱岩与无矿糜棱岩的AMS特征有明显的区别。尽管高村金矿床的和云西金矿床不含矿与含矿糜棱岩σ1K3)的方位相同,都为NNW-SSE向,近于水平。但是σ3K1)有明显的区别,不含矿糜棱岩为NEE-SWW向,倾伏角较缓;而含矿糜棱岩近于直立,倾伏角均大于70°(表1,图7、8)。推测燕山期叠加的脆韧性变形对印支期形成的糜棱岩应变特征进行了改造,使得最大磁化率主轴(即最小主应力轴)变陡。另外,含矿糜棱岩的Km平均值分别为1426.9×10-6(SI)和3581.3×10-6(SI),>500×10-6(SI),Pj平均值为1.586和1.491,均大于无矿糜棱岩由于含矿糜棱岩中的载磁矿物主要为磁黄铁矿,其含矿远大于无矿糜棱岩,导致其Km平均值远大于无矿糜棱岩。前人对磁化率各向异性度(P)进行了分析:P<1.05,表示岩石为弱变形;1.05≤P<1.10反映岩石发生了韧性变形;P≥1.10则说明岩石经历了强韧性变形河台金矿剪切带中绝大多数无矿糜棱岩和含矿糜棱岩的Pj值大于1.10,说明两者都经历了强韧性变形,并且含矿糜棱岩的变形强度比无矿糜棱岩的变形强度更大(图5a、b)。因此,糜棱岩的变形强度与含矿性有一点正相关关系。师爽等(2021)对初糜棱岩、糜棱岩和超糜棱岩中的白云母含量及b0值展开对比研究,超糜棱岩的白云母含量和b0值高于初糜棱岩和糜棱岩,说明超糜棱岩变形强度更强且热液活动更为强烈,因此更有利于金矿化的发生XuShunshan et al.(1997)对胶东东部重要的控矿断裂米山断裂的构造岩进行AMS研究,也认为金矿化与岩石变形强度成正比。综上所述,糜棱岩的变形强度与含矿性存在一定的正相关,燕山期叠加的脆韧性变形使得最大应变主轴(即最小主应力轴)变陡,更有利于热液的运移和最终成矿。
6  结论
(1)河台金矿田糜棱岩的载磁矿物主要为黑云母和磁黄铁矿,但是磁黄铁矿的贡献要远大于黑云母。
(2)河台金矿田含金剪切带都是在印支期NNW-SSE向近水平的强烈挤压作用下形成的,其中发育的糜棱岩为S型和SL型构造岩,具有强烈压扁的特征,并且在剪切变形过程中纯剪切作用所占的比重要明显大于简单剪切
(3)糜棱岩的变形强度与含矿性有一定的正相关关系,而在燕山期成矿过程中叠加的脆韧性变形导致河台金矿田含矿糜棱岩磁线理(K1)近于直立,从而更有利于热液的运移和成矿。

-------END------

原文来源:《地质学报》2024年第6期P1757-1775

封面标题、导读评论和排版整理等《覆盖区找矿》公众号.

推荐读者下载、阅读和引用原文!

------

发布于 2025-02-20 09:10:47
收藏
分享
海报
82
上一篇:耦合“多层级结构—全生命周期”的全域土地综合整治监测评价理论研究 下一篇:黔西南金矿区域成矿规律及成矿模式
目录

    推荐阅读

    0 条评论

    本站已关闭游客评论,请登录或者注册后再评论吧~

    忘记密码?

    图形验证码

    微信号: 后台设置微信号
    添加微信好友,详细了解产品
    添加微信
    复制成功
    微信号: ziranziyuan1
    更多资料,添加微信
    我知道了